Question: -

A straight line through the vertex P of a ΔPQR intersects the side QR at the point S and the circumcircle of the ΔPQR at the point T. If S is not the centre of the circumcircle, then (2008, 4M)

the centre of the circumcircle, then (2008, 4M) (a)
$$\frac{1}{PS} + \frac{1}{ST} < \frac{2}{\sqrt{QS \times SR}}$$
 (b) $\frac{1}{PS} + \frac{1}{ST} > \frac{2}{\sqrt{QS \times SR}}$ (c) $\frac{1}{PS} + \frac{1}{ST} < \frac{4}{QR}$ (d) $\frac{1}{PS} + \frac{1}{ST} > \frac{4}{QR}$

Solution: -

Let a straight line through the vertex P of a given ΔPQR intersects the side QR at the point S and the circumcircle of ΔPQR at the point T.

Points P, Q, R, T are concyclic, then $PS \cdot ST = QS \cdot SR$

Now,
$$\frac{PS + ST}{2} > \sqrt{PS \cdot ST}$$
 [: AM > GM]

and
$$\frac{1}{PS} + \frac{1}{ST} > \frac{2}{\sqrt{PS \cdot ST}} = \frac{2}{\sqrt{QS \cdot SR}}$$
Also,
$$\frac{SQ + QR}{2} > \sqrt{SQ \cdot SR}$$

$$\Rightarrow \qquad \frac{QR}{2} > \sqrt{SQ \cdot SR}$$

$$\Rightarrow \qquad \frac{1}{\sqrt{SQ \cdot SR}} > \frac{2}{QR}$$

$$\Rightarrow \qquad \frac{2}{\sqrt{SQ \cdot SR}} > \frac{4}{QR}$$

$$\therefore \qquad \frac{1}{PS} + \frac{1}{ST} > \frac{2}{\sqrt{QS \cdot SR}} > \frac{4}{QR}$$